Find the surface area of the solid of revolution obtained by rotating the curve y=2x^3 from x=1 to x=6 about the x-axis?

1 Answer
May 25, 2018

#color(blue)[S_A=2piint_1^6(2x^3)*sqrt[1+(6x^2)^2]*dx=5.863*10^5]#

Explanation:

The surface area of the solid revolution around the #"x-axis"# is given by:

#color(red)[S_A=2piint_a^by*sqrt[1+(y')^2]*dx#

we will find the surface area bounded x=1 , x=6 and the x-axis

#S_A=2piint_1^6(2x^3)*sqrt[1+(6x^2)^2]*dx#

#S_A=2piint_1^6(2x^3)*sqrt[1+(36x^4)]*dx#

#S_A=(2pi)/72int_1^6(144x^3)*sqrt[1+(36x^4)]*dx#

#=pi/36[2/3(1+(36x^4))^(3/2)]_1^6=[(pi*(36*x^4+1)^(3/2))/54]_1^6#

#=[4*(46657^(3/2)/216-37^(3/2)/216)*pi]=[((46657^(3/2)-37^(3/2))*pi)/54]#

#=5.863*10^5#