How do you prove that costheta-sinthetasin2theta=costhetacos2theta?

2 Answers
May 26, 2018

costheta-sinthetasin2theta=costheta-sintheta2sinthetacostheta=

=costheta-2sin^2thetacostheta=costheta(1-2sin^2theta)

But we know that cos2theta=cos^2theta-sin^2theta=1-sin^2theta-sin^2theta=1-2sin^2theta

Then, we have costheta-sinthetasin2theta=costhetacos2theta

QED

May 26, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)sin2theta=2sinthetacostheta

•color(white)(x)cos2theta=1-2sin^2theta

"consider the left side"

costheta-sintheta(2sinthetacostheta)

=costheta-2sin^2thetacostheta

=costheta(1-2sin^2theta)

=costhetacos2theta

="right side "rArr"verified"