#d/dxsinx cosy#?

2 Answers
May 26, 2018

#cos(y)cos(x)#

Explanation:

We have
#d(sin(x)cos(y))/dx#
#cos(y)d(sin(x))/dx#
since #cos(y)=const.#
we get
#cos(y)cos(x)#

May 26, 2018

#d/dxsinxcosy=cosxcosy-sinxsinydy/dx#

Explanation:

We want to find #d/dxsinxcosy# assuming #y=y(x)#.

In this case, we use the product rule:

#d/dx uv=v(du)/dx+u(dv)/dx#

where #u=u(x),v=v(x)#

So

#d/dxsinxcosy=cosyd/dxsinx+sinxd/dxcosy#

We know #d/dxsinx=cosx#. To find #d/dxcosy#, we use the chain rule:

#d/dxf(g(x))=f^'(g(x))g^'(x)#

So

#d/dxcosy=-sinyd/dxy=-dy/dxsiny#

And

#d/dxsinxcosy=cosxcosy-dy/dxsinxsiny#