What is the Integral of #tan^2 x sec^4 x dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer maganbhai P. May 27, 2018 #I=tan^3x/3+tan^5x/5+c# Explanation: We know that, #(1)color(red)(int[f(x)]^nd/(dx)(f(x))dx=[f(x)]^(n+1)/(n+1)+c, where,(n!=-1,f(x)>0 and f'(x)!=0)# We have, #I=inttan^2xsec^4xdx# #=int tan^2x(sec^2x)sec^2xdx# #=inttan^2x(1+tan^2x)sec^2xdx# #=int tan^2xsec^2xdx+inttan^4xsec^2xdx# #=int(tanx)^2d/(dx)(tanx)dx+int(tanx)^4d/(dx)(tanx)dx# #=(tanx)^3/3+(tanx)^5/5+c...to Apply(1)# #=tan^3x/3+tan^5x/5+c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 33308 views around the world You can reuse this answer Creative Commons License