How do you solve the system of equations #x^2+6y^2=40# and #y^2-3x^2=-44# by the elimination method?
1 Answer
May 27, 2018
Explanation:
#y^2-3x^2=-44to(2)#
#"rearranging equation "(1)" gives"#
#x^2=40-6y^2to(3)#
#color(blue)"substitute "x^2=40-6y^2" into "(2)#
#y^2-3(40-6y^2)=-44#
#y^2-120+18y^2=-44#
#19y^2-120=-44#
#"add 120 to both sides"#
#19y^2=-44+120=76#
#"divide both sides by 19"#
#y^2=76/19=4#
#color(blue)"take the square root of both sides"#
#y=+-sqrt4=+-2#
#"substitute "y=+-2" into equation "(3)#
#x^2=40-24=16#
#x=+-4#
#"solutions are "(-4,+-2),(4,+-2)#
graph{(x^2+y^2-40)(y^2-3x^2+44)=0 [-20, 20, -10, 10]}