If #h( x ) = x ^ { 2} - 2x and g ( x ) = 3x + 5#, then what #( h \cdot g ) ( - 4)#?

1 Answer
May 30, 2018

Should be -168

Explanation:

Assuming that #(h*g)(x)=h(x)*g(x)#, we can either evaluate both functions separately and then multiply together, or we can combine the functions and then solve. Let's do the latter first, then the former:

#(h*g)(x)=(x^2-2x)(3x+5)#

#(h*g)(x)=3x^3+5x^2-6x^2-10x#

#(h*g)(x)=3x^3-x^2-10x#

Now, solve the function for #x=-4#

#(h*g)(-4)=3(-4)^3-(-4)^2-10(-4)#

#(h*g)(-4)=3(-64)-16+40#

#(h*g)(-4)=-192-16+40#

#color(green)((h*g)(-4)=-168#

Let's try solving each function separately, then combining:

#h(-4)=(-4)^2-2(-4)#

#h(-4)=16+8=color(blue)(24)#

#g(-4)=3(-4)+5#

#g(-4)=-12+5=color(red)(-7)#

#h(-4)*g(-4)=(h*g)(-4)=color(blue)(24)*color(red)((-7))#

#color(green)((h*g)(-4)=-168#