Please help me simplify. What is #cos^4theta -sin^4theta +sin^2theta# equal to?

enter image source here

2 Answers
May 31, 2018

#cos^2(x)#

Explanation:

We have
#(cos^4(x)-sin^4(x))=(cos^2(x)-sin^2(x)(cos^2(x)+sin^2(x))+sin^2(x)#
Now we use that
#sin^2(x)+cos^2(x)=1#

So we get
#cos^2(x)-sin^2(x)+sin^2(x)=cos^2(x)#

May 31, 2018

#cos^2theta#

Explanation:

#cos^4theta-sin^4theta" is a "color(blue)"difference of squares"#

#•color(white)(x)a^2-b^2=(a-b)(a+b)#

#"here "a=cos^2theta" and "b=sin^2theta#

#cos^4theta-sin^4theta=(cos^2theta-sin^2theta)(cos^2theta+sin^2theta)#

#[cos^2theta+sin^2theta=1]#

#cos^4theta-sin^4theta+sin^2theta#

#=cos^2theta-sin^2theta+sin^2theta#

#=cos^2theta#