How do you solve #\frac { - 3x - 3} { 6} - \frac { 1- x } { 5} = 5#?

2 Answers
Jun 1, 2018

#x = -19#

Explanation:

As explained below:

Cross multiply as shown below:

#(-3x-3)/6 - (1-x)/5 = 5#

#(5(-3x-3)-6(1-x))/5 xx 6 = 5#

#(-15x-15 - 6 +6x)/30 = 5#

#(-9x - 21)/30 = 5#

#-9x - 21 = 5 xx 30#

#-9x = 150+21#

#-9x = 171#

#x = -171/9#

#x = -19#

Checking the answer:

#(-3(-19) - 3)/6 - (1-(-19))/5#

#(57-3)/6 - 20/5#

#54/6 - 20/5#

#9 - 4 = 5#

Jun 1, 2018

X=-19

Explanation:

Multiply everything by 30 to remove the fractions

#(30(-3x-3))/6 - (30(1-x))/5=30xx5#

Expand the brackets

#5(-3x-3)-6(1-x)=150#

Collect like terms

#-15x-15-6+6x=150#

Add 21 to both sides

#-9x-21=150#

Divide both sides by -9

#-9x=171#

#x=-19#