How do you find the second derivative of #f(x)=x^2 lnx# ?

2 Answers
Jun 1, 2018

#f''(x)=2ln(x)+3#

Explanation:

By the product rule we get
#f'(x)=2xln(x)+x^2*17x#
simplifying
#f'(x)=2xln(x)+x#
#f''(x)=2ln(x)+2x*1/x+1#
simplifying we get
#f''(x)=2ln(x)+3#

Jun 1, 2018

#f''(x)=3+2lnx#

Explanation:

#"differentiate using the "color(blue)"product rule"#

#"given "f(x)=g(x)h(x)" then"#

#f'(x)=g(x)h'(x)+h(x)g'(x)larrcolor(blue)"product rule"#

#g(x)=x^2rArrg'(x)=2x#

#h(x)=lnxrArrh'(x)=1/x#

#f'(x)=x^2. 1/x+2xlnx=x+2xlnx#

#"differentiate "2xlnx" using the "color(blue)"product rule"#

#g(x)=2xrArrg'(x)=2#

#h(x)=lnxrArrh'(x)=1/x#

#d/dx(2xlnx)=2x . 1/x+2lnx=2+2lnx#

#f''(x)=1+2+2lnx=3+2lnx#