What is the arc length of the curve given by #x =sqrt( t^2+t+1)# and #y= 1/(t^2+1) -t#, for # 0<t<1#?

1 Answer
Jun 1, 2018

#approx 1.66982#

Explanation:

With
#x(t)=sqrt(t^2+t+1)#
we get
#x'(t)=(1+2t)/sqrt(t^2+t+1)#
#y(t)=1&(t^2+1)-t#
so
#y'(t)=-1-2t/(1+t^2)^2#
So we have to solve
#int_0^1sqrt((1+2t)^2/(4(1+t+t^2)^2)+(1+2t/(1+t^2)^2))dt#
I only found an approximate value.