How do you find the antiderivative of #f(x)=-1/2x^3+2x^2-3x-2#?
2 Answers
Jun 2, 2018
Explanation:
The antiderivative of the function is basically the integral of the function. So here we have:
We use the power rule and the constant rule, which states that,
#inta^n \ dx=(a^(n+1))/(n+1)+C#
#inta*f(x) \ dx=aintf(x) \ dx# ,
respectively.
Jun 2, 2018
Explanation:
#"integrate each term using the "color(blue)"power rule"#
#•color(white)(x)int(ax^n)=a/(n+1)x^(n+1)ton!=-1#
#int(-1/2x^3+2x^2-3x-2)dx#
#=-1/8x^4+2/3x^3-3/2x^2-2x+c#
#"where c is the constant of integration"#