How do you solve #-x ^ { 2} - 7x - 15\leq - 5#?

2 Answers
Jun 2, 2018

#x<=-5# or #x>=-2#

Explanation:

Writing
#-x^2-7x-15<=-5#

#-x^2-7x-10<=0#
#x^2+7x+10>=0#
so

#(x+7/2)^2-9/4>=0#
#(x+7/2-3/2)(x+7/2+3/2)>=0#
#(x+2)(x+5)>=0#
so
#x>=-2# or #x<=-5#

Jun 2, 2018

The solutions are #x in (-oo,-5] uu[-2,+oo)#

Explanation:

The inequality is

#-x^2-7x-15<=-5#

#x^2+7x-5+15>=0#

#x^2+7x+10>=0#

#(x+5)(x+2)>=0#

Let #f(x)=(x+5)(x+2)#

Build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-5##color(white)(aaaaaa)##-2##color(white)(aaaaa)##+oo#

#color(white)(aaaa)##x+5##color(white)(aaaaa)##-##color(white)(aaa)##0##color(white)(aaaa)##+##color(white)(aaaaa)##+#

#color(white)(aaaa)##x+2##color(white)(aaaaa)##-##color(white)(aaa)####color(white)(aaaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaa)##0##color(white)(aaaa)##-##color(white)(aa)##0##color(white)(aa)##+#

Therefore,

#f(x)>=0# when #x in (-oo,-5] uu[-2,+oo)#

graph{x^2+7x+10 [-12.875, 7.125, -3.24, 6.76]}