How do you find the inflection point of #(x+1)/(x^(2)+1)#?

2 Answers
Jun 3, 2018

We get the Points
#P_1(1;1),P_2(-2-sqrt(3),1/4*(1-sqrt(3))),P_3(-2+sqrt(3),1/4(1+sqrt(3)))#

Explanation:

By the Quotient rule we get
#f'(x)=(-x^2-2x+1)/(x^2+1)^2#
#f''(x)=(2x^3+6x^2-6x+2)/(x^2+1)^3#
so we have to solve
#2(x^3+3x^2-3x-1)=0#
This is
#(x-1)(x^2+4x+1)=0#
Solutions are
#x_1=1#
#x_2=-2-sqrt(3)#
#x_3=-2+sqrt(3)#

Jun 3, 2018

#x_1=1#
#x_2=-2-sqrt(3)#
#x_3=-2+sqrt(3)#

Explanation:

For a point of inflection #g#:
#f''(g)=0#
#f'''(g)ne0#

#f(x)=(x+1)/(x^2+1)#

Using the Quotient rule:
#f'(x)=(1*(x^2+1)-(x+1)(2x))/(x^2+1)^2#
#=(x^2+1-2x^2-2x)/(x^2+1)^2#
#=(-x^2-2x+1)/(x^2+1)^2#
#=-((x+1)^2-2)/(x^2+1)^2#

Again, using the Quotient rule:
#f''(x)=-(2*(x+1)*(x^2+1)^2-((x+1)^2-2)(2*2x(x^2+1)))/(x^2+1)^4#
#=-((2x+2)* (x^2+1)^2-4x(x+1)^2(x^2+1)-4x(x^2+1))/(x^2+1)^4#
#=-((2x+2)*(x^2+1)-4x(x+1)^2-4x)/(x^2+1)^3#

#f''(x)=0#
#0=-((2x+2) * (x^2+1)-4x(x+1)^2-4x)/(x^2+1)^3|* (x^2+1)^3#
#0=-(2x+2) * (x^2+1)-4x(x+1)^2-4x#
#0=-2x^3+2x-2x^2-2+4x^3+8x^2-4x-4x#
#0=2x^3+6x^2-6x-2#

#x_1=1#
#x_2=-2-sqrt(3)#
#x_3=sqrt(3)-2#

Again, using the Quotient rule:
#f'''(x)=-(6(x^4+4x^3+4x^2-4x-1))/(x^2+1)^4#
#f'''(1)=-3/2#
#f'''(-2-sqrt(3))=3/32*(4*sqrt(3)-7)~~-0.0067#
#f'''(-2+sqrt(3))=-3/32*(4*sqrt(3)+7)~~-1.31#