We know that,
#"If"# #alpha and beta# #"are the roots of the quadratic equation :"#
#color(red)(Px^2+Qx+R=0,then,alpha+beta=-Q/Pand alpha*beta=R/P#
We have,
#x^2-ax+b=0=>P=1 , Q=-a and R=b#
The roots are: #alpha=tanA and beta=tanB#
So,
#tanA+tanB=-Q/P=-(-a)/1=a#
#tanA*tanB=R/P=b/1=b#
Now,
#tan(A+B)=(tanA+tanB)/(1-tanAtanB)=a/(1-b)#
#=>tan^2(A+B)=a^2/(1-2b+b^2)#
#=>cot^2(A+B)=(1-2b+b^2)/a^2..to[becausecottheta=1/tantheta]#
#=>1+cot^2(A+B)=1+(1-2b+b^2)/a^2to#[add. bothsides #1#]
#=>csc^2(A+B)=(a^2+1-2b+b^2)/a^2#
#=>sin^2(A+B)=a^2/(a^2+1-2b+b^2)..to[becausesintheta=1/(csctheta) ]#
Note :
We have take the quadratic equn.#Px^2+Qx+R=0#,because
#A, B, a, b,# are used in the question.