What is the general solution for #4cosx+3sinx=-1#?

3 Answers

#x=2(arctan(1/3*(3+2*sqrt(6)))+kpi#

#x=2(arctan(1/3*(3-2sqrt(6)))+kpi#

Explanation:

using the so called Weierstrass Substitution
#sin(x)=(2t)/(1+t^2)#

#cos(x)=(1-t^2)/(1+t^2)#

#tan(x/2)=t#, we get

#4(1-t^2)/(1+t^2)+6t/(1+t^2)=-1# so we get

#0=3t^2-6t-5#

with

#t_{1,2}=1pm2sqrt(2/3)#

Jun 5, 2018

#x=2kpi+alpha+-beta,kinZZ,alpha#=#tan^-1 (3/4) , beta#=#cos^-1(-1/5)#

Explanation:

We take,

#4=rcosalpha and 3=rsinalpha...to(1)#

So,

#4cosx+3sinx=-1#

#=>rcosalphacosx+rsinalphasinx=-1#

#=>r[cosxcosalpha+sinxsinalpha]=-1#

#=>rcos(x-alpha)=-1#

#=>color(red)(cos(x-alpha)=-1/r...to(2)#

Form #(1)# ,we get

#color(red)(cosalpha=4/r and sinalpha=3/r...to(3)#

Now,

#cos^2alpha +sin^2alpha=1#

#=>16/r^2+9/r^2=1#

#=>r^2=25=color(blue)(r=5#

From #(3)#

#cosalpha=4/5 > 0 and sinalpha =3/5 > 0#

#=>tanalpha=(3/5)/(4/5)=3/4 >0=>I^(st)Quadrant#

#tanalpha=3/4=>color(orange)(alpha=tan^-1(3/4)#

From #(2)#

#cos(x-alpha)=-1/5#

#cos(x-alpha)=cosbeta ,where,color(violet)( cosbeta=-1/5#

So,the general solution of equn. is :

#x-alpha=2kpi+-beta,kinZZ andbeta=cos^-1(-1/5)#

#:.x=2kpi+alpha+-beta,kinZZ,alpha#=#tan^-1 (3/4) , beta#=#cos^-1(-1/5)#

Jun 5, 2018

#x = 138^@41 + k360^@#
#x = 295^@33 + k360^@#

Explanation:

4cos x + 3sin x = -1
Divide both side by 4
#cos x + (3/4)sin x = - 1/4# (1)
Call #tan t = sin t/cos t = 3/4# --> #t = 36^@87# --> #cos t = 0.8#
Equation (1) becomes:
#cos x.cos t + sin t.sin x = - cos t/4#.
#cos (x - t) = cos (x - 36.87) = - 0.8/4 = - 0.2#
Calculator and unit circle give 2 solutions for (x - 36.87)
#(x - 36.87) = +- 101^@54#
a. x - 36.87 = 101.54
#x = 101.54 + 36.87 = 138^@41 + k360^@#
b. x - 36.87 = - 101.54
#x = - 101.54 + 36.87 = - 64^@67 + k360^@#
Note. #x = - 64^@67# is co-terminal to #x = 295^@33#.