If #sintheta=1/3# and #theta# is in quadrant I, how do you evaluate #cos2theta#?
2 Answers
Jun 5, 2018
Explanation:
=
=
=
=
=
=
Jun 5, 2018
Explanation:
#"using the "color(blue)"trigonometric identities"#
#•color(white)(x)cos2theta=cos^2theta-sin^2theta#
#•color(white)(x)sin^2theta+cos^2theta=1#
#rArrcostheta=+-sqrt(1-sin^2theta)#
#theta" is in first quadrant as is "2theta#
#costheta=sqrt(1-(1/3)^2)=sqrt(1-1/9)=sqrt(8/9)#
#rArrcostheta=(2sqrt2)/3#
#cos2theta=((2sqrt2)/3)^2-(1/3)^2#
#color(white)(cos2theta)=8/9-1/9=7/9#