Given that sin(θ)=-1/squareroot2,how do you find the two possible angles for θ, given that −π<θ≤2π?

2 Answers
Jun 6, 2018

#sin t = - 1/sqrt2#
Trig table and unit circle give 2 solutions for t.
#t = - pi/6#, and #t = pi - (-pi/6) = pi + pi/6 = (7pi)/6#
Note.
#t = - pi/6# is co-terminal to #t = (11pi)/6#
#t = (7pi)/6# is co-terminal to #t = - (5pi)/6#
Inside the interval #(-pi, 0)# the answers are:
#t = - (5pi)/6# , and #t = - pi/6#
Inside the interval #(0, 2pi)#, the answers are:
#t = (7pi)/6#, and #t = (11pi)/6#

Jun 7, 2018

Here,

#sintheta=-1/sqrt2 ,where,-pi < theta <=2pi#

We have,

#sintheta=-1/sqrt2 < 0 =>color(red)(III^(rd)Quadrant) orcolor(blue)( IV^(th)Quadrant)#

Now,

#-pi < theta <=2pi=>-pi < theta < 0 or 0 <= theta <=2pi#

We have two options :

#(i)-pi < theta < 0 ,then#

#sintheta=-1/sqrt2#

#=>theta=-pi+pi/4=-(3pi)/4tocolor(red)(III^(rd)Quadrant#

#or theta=0-pi/4=-pi/4tocolor(blue)(IV^(th)Quadrant)#

#(ii)0 <=theta <=2pi#

#sintheta=-1/sqrt2#

#=>theta=pi+pi/4=(5pi)/4tocolor(red)(III^(rd)Quadrant#

#or theta=2pi-pi/4=(7pi)/4tocolor(blue)(IV^(th)Quadrant)#

Hence,

#theta=-(3pi)/4,-pi/4, or (5pi)/4,(7pi)/4#