As per the question, we have
#x+1/x = 11#
#:.(x+1/x)^2=(11)^2# ... [Squaring both sides]
#:.x^2+1/x^2+2(x)(1/x)=121#
#:.x^2+1/x^2+2(cancelx)(1/cancelx)=121#
#:.x^2+1/x^2+2=121#
#:.x^2+1/x^2=121-2=119# ... (i)
Now, back to #x+1/x=11#
#(x+1/x)^4=(11)^4#
#:.x^4+1/x^4+4(x^3)(1/x)+6(x^2)(1/x^2)+4(x)(1/x^3)=(11)^4#
#:.x^4+1/x^4+4(x^2)+6+4(1/x^2)=14641#
#:.x^4+1/x^4+4(x^2)+4(1/x^2)=14641-6#
#:.x^4+1/x^4+4(x^2+1/x^2)=14635#
#:.x^4+1/x^4+4(119)=14635# ... [Substituting the value of #x^2+1/x^2# from (i)]
#:.x^4+1/x^4+476=14635#
#:.x^4+1/x^4=14635-476#
#:.x^4+1/x^4=14159#
Hence, the answer.
Note: If you want to know more about the identity #(a+b)^4# or any other, go to THIS SITE.