We have, #dy/dx=(x+y)^2/(xy)={x(1+y/x)}^2/(xy)#.
#:. dy/dx=x^2/(xy)(1+y/x)^2#
# i.e., dy/dx=x/y(1+y/x)^2#.
So, this is a Homogeneous Diff. Eqn.
Subst.ing #y/x=v, i.e., y=vx," we have, "dy/dx=x(dv)/dx+v#.
#:. x(dv)/dx+v=1/v(1+v)^2=1/v+2+v#.
#:. x(dv)/dx=1/v+2=(1+2v)/v#.
#:. v/(2v+1)dv=dx/x............"[Separable Variable]"#.
#:. dx/x=1/2*(2v)/(2v+1)dv=1/2{(2v+1)-1}/(2v+1)dv#,
#=1/2{(2v+1)/(2v+1)-1/(2v+1)}dv#.
# rArr dx/x=1/2(1-1/(2v+1))dv#.
#"Integrating, "intdx/x+lnc=1/2int(1-1/(2v+1))dv#.
#:. lnx+lnc=1/2{v-1/2*ln(2v+1)}=1/2v-1/4ln(2v+1)#.
#:. lnx+lnc+1/4ln(2v+1)=1/2v#,
# or, 4lnx+4lnc+ln(2v+1)=2v#.
#:. ln{(2v+1)(cx)^4}=2v#.
Replacing #v" by "y/x#, we get,
# 2y=xln{(2y+x)x^3c^4}#, as the desired General Solution!
Enjoy Maths.!