Can you solve this ?

lim x->+oo [ln(x)/x]

2 Answers
Jun 10, 2018

Lim_(x->oo)(lnx/x)=0

Explanation:

.

Using L'Hopitale's rule:

Lim_(x->oo)(lnx/x)=Lim_(x->oo)((d/dx(lnx))/(d/dx(x)))=Lim_(x->oo)((1/x)/1)=0/1=0

Jun 10, 2018

from l'hopital's rule
let y=Lim_(x->oo)ln(x)/x=Lim_(x->oo)1/(x.1)
substitute for x=oo
y=1/oo=0