How do I solve #(2sqrt2-2)cosalpha=3sin^2alpha+sqrt2-4#?

3 Answers
Jun 10, 2018

#:. alpha=2kpi+-arccos[{-(sqrt2-1)+-root(4)2}/3], k in ZZ#.

Explanation:

Replacing #sin^2alpha# in the right member by #(1-cos^2alpha)#, we have,

#(2sqrt2-2)cosalpha=3-3cos^2alpha+sqrt2-4#.

#:. 3cos^2alpha+2(sqrt2-1)cosalpha-(sqrt2-1)=0#.

This is a quadr. eqn. in #cosalpha#, and, its discriminant

#Delta=(2sqrt2-2)^2+4*3*(sqrt2-1)#,

#=(8-8sqrt2+4)+12sqrt2-12#,

# :. Delta=4sqrt2#.

Therefore, using the quadr. formula, we have,

#cosalpha={-2(sqrt2-1)+-sqrt(4sqrt2)}/(2*3)#,

#={-2(sqrt2-1)+-2root(4)2}/(2*3)#,

#:. cosalpha={-(sqrt2-1)+-root(4)2}/3#.

#:. alpha=2kpi+-arccos[{-(sqrt2-1)+-root(4)2}/3], k in ZZ#.

Jun 10, 2018

#=>alpha=2npi+-cos^-1((1-sqrt2+2^(1/4))/3)# or
#alpha=2npi+-cos^-1((1-sqrt2-2^(1/4))/3)#

Explanation:

#" "(2sqrt2-2)cosalpha=3sin^2alpha+sqrt2-4#
#=>2(sqrt2-1)cosalpha=3(1-cos^2alpha)+sqrt2-4#

let #cosalpha=y", then equation becomes" #
#2(sqrt2-1)y=3(1-y^2)+sqrt2-4#
#=>3y^2+2(sqrt2-1)y-3-sqrt2+4=0#
#=>3y^2+2(sqrt2-1)y+(1-sqrt2)=0#

now solve for #y#, from quadratic formula
#y=(-2(sqrt2-1)+-sqrt((2(sqrt2-1))^2-4(3)(1-sqrt2)))/(2(3))#
#=(2(1-sqrt2)+-sqrt(4(2+1-2sqrt2)-12+12sqrt2))/6#
#=(2-2sqrt2+-2sqrt(sqrt2))/6#
#=>cosalpha=(2-2sqrt2+-2sqrt(sqrt2))/6#
#=> cosalpha=(1-sqrt2+2^(1/4))/3" or " cosalpha=(1-sqrt2-2^(1/4))/3#
#=>alpha=cos^-1((1-sqrt2+2^(1/4))/3)# or
#alpha=cos^-1((1-sqrt2-2^(1/4))/3)#
since #cosx# repeats itself after #2npi# period #(ninZZ) " add " 2npi# for general solutions

Jun 10, 2018

#x = +- 74^@93 + k360^@#
#x = +- 122^@68 + k360^@#

Explanation:

#(2sqrt2 - 2)cos x = 3sin^2 x + sqrt2 - 4#
#(2sqrt2 - 2)cos x = 3 - 3cos^2 x + sqrt2 - 4#
#3cos^2 x + 2(sqr2 - 1))cos x - (sqrt2 - 1) = 0#
#3cos^2 x + 0.828cos x - 0.414 = 0#
Solve this quadratic equation for cos x.
#D = d^2 - 4ac = 0.686 + 4.968 = 5.65# --> #d = +- 2.38#
There are 2 real roots:
#cos x = -b/(2a) +- d/(2a) = - 0.828/6 +- 2.38/6 = - 0.138 +- 0.40#
cos x = - 0.54, and cos x = 0.26
a. cos x = - 0.54
Calculator and unit circle give 2 solutions:
#x = +- 122^@68 + k360^@#
b. cos x = 0.26 -->
#x = +- 74^@93 + k360#
Check by calculator:
1. x = 74.93 --> 0.83cos x = 0.22 --> #(2sqr2 - 2)cos x = 0.22 #
#3sin^2 x + sqrt2 - 4 = 2.8 + 1,41 - 4 = 0.21#. Proved
2. x = 122.68 --> #(2sqrt2 - 2)cos x = - 0.45#
#3sin^2 x + sqrt2 - 4 = 2.13 + 1.42 - 4 = - 0.45#. Proved