How do you differentiate #e^(-10x)#?

2 Answers
Jun 11, 2018

#-10e^(-10x)#

Explanation:

Given: #e^(-10x)#.

Use the chain rule, which states that,

#dy/dx=dy/(du)*(du)/dx#

Let #u=-10x,:.(du)/dx=-10#.

Then, #y=e^u,:.dy/(du)=e^u#.

Combining, we get:

#dy/dx=e^u*-10#

#=-10e^u#

Substitute back #u=-10x# to get the final answer:

#=-10e^(-10x)#

Note:

A common fact in derivatives is that #d/dx(e^(f(x)))=f'(x)e^(f(x))#.

#d/dx(e^(-10x))=-10*e^(-10x)#

Explanation:

By the formula #(d(e^u))/dx=e^u*(du)/dx#

#d/dx(e^(-10x))=e^(-10x)*(d(-10x))/dx#

#d/dx(e^(-10x))=e^(-10x)*(-10)#

#d/dx(e^(-10x))=-10*e^(-10x)#

I hope the explanation is useful....God bless...