Let us take two arithmetic sequence :
#(i)a,a+d,a+2d,a+3d,...,a+(n-1)d,...#
#(ii)A,A+D,A+2D,A+3D,...,A+(n-1)D,...#
So, sum of #n^(th)term :#
#S_n=n/2[2a+(n-1)d] and S'_n=n/2[2A+(n-1)D]#
#:.ratio =(n/2[2a+(n-1)d])/(n/2[2A+(n-1)D])=(7n+1)/(4n+27)#
#=>(2a+(n-1)d)/(2A+(n-1)D)=(7n+1)/(4n+27)...to(1)#
Now,
ratio of #n^(th)term=a_n/A_n=(a+(n-1)d)/(A+(n-1)D#
ratio of #11^(th)term=a_11/A_11=(a+(11-1)d)/(A+(11-1)D#
#i.e.a_11/A_11=(a+10d)/(A+10D)#
#=>a_11/A_11=(2a+20d)/(2A+20D)...to(2)#
Comparing #LHS,of (1) and RHS, of (2)# we can say that
#n-1=20=>n=21#
So, we take #n=21# into #(1)#
#(2a+(21-1)d)/(2A+(21-1)D)=(7(21)+1)/(4(21)+27).#
#=>(2a+20d)/(2A+20D)=(147+1)/(84+27)#
#=>a_11/A_11=148/111...to#from#(2)#
#=>a_11/A_11=4/3#