The ratio between the sum of #n^(th)# term is of two arithmetic progressions is #(7n+1)/(4n+27)#. Find the ratio of their eleventh term?

1 Answer
Jun 12, 2018

#a_11/A_11=4/3#

Explanation:

Let us take two arithmetic sequence :

#(i)a,a+d,a+2d,a+3d,...,a+(n-1)d,...#

#(ii)A,A+D,A+2D,A+3D,...,A+(n-1)D,...#

So, sum of #n^(th)term :#

#S_n=n/2[2a+(n-1)d] and S'_n=n/2[2A+(n-1)D]#

#:.ratio =(n/2[2a+(n-1)d])/(n/2[2A+(n-1)D])=(7n+1)/(4n+27)#

#=>(2a+(n-1)d)/(2A+(n-1)D)=(7n+1)/(4n+27)...to(1)#

Now,

ratio of #n^(th)term=a_n/A_n=(a+(n-1)d)/(A+(n-1)D#

ratio of #11^(th)term=a_11/A_11=(a+(11-1)d)/(A+(11-1)D#

#i.e.a_11/A_11=(a+10d)/(A+10D)#

#=>a_11/A_11=(2a+20d)/(2A+20D)...to(2)#

Comparing #LHS,of (1) and RHS, of (2)# we can say that

#n-1=20=>n=21#

So, we take #n=21# into #(1)#

#(2a+(21-1)d)/(2A+(21-1)D)=(7(21)+1)/(4(21)+27).#

#=>(2a+20d)/(2A+20D)=(147+1)/(84+27)#

#=>a_11/A_11=148/111...to#from#(2)#

#=>a_11/A_11=4/3#