The horizontal distance travelled is
#{(x=vcos60t),(x=vcostheta(t-0.5)):}#
Therefore,
#60*1/2*t=60costheta(t-0.5)#
#30t=60(t-0.5)costheta#
#t=2tcostheta-costheta#
#t(2costheta-1)=costheta#
#t=costheta/(2costheta-1)#
The vertical distance travelled is
#{(y=vsin60*t-1/2g t^2=52t-4.9t^2),(y=vsintheta(t-0.5)-1/2g(t-0.5)^2=60tsintheta-30sintheta-4.9(t-0.5)^2):}#
#{(y=52t-4.9t^2),(y=60tsintheta-30sintheta-4.9t^2+4.9t-1.23):}#
Therefore,
#52t-4.9t^2=60tsintheta-30sintheta-4.9t^2+4.9t-1.23#
#60tsintheta-30sintheta+4.9t-52t-1.23=0#
#t(60sintheta-47.1)=30sintheta+1.23#
#t=(30sintheta+1.23)/(60sintheta-47.1)#
The #t#'s must be equal
#(30sintheta+1.23)/(60sintheta-47.1)=costheta/(2costheta-1)#
#(30sintheta+1.23)(2costheta-1)=costheta(60sintheta-47.1)#
#60sinthetacostheta-30sintheta+2.46costheta-1.23=60sintheta costheta-47.1costheta#
#-30sintheta+49.56costheta=1.23#
#49.56costheta-30sintheta=1.23#
Solving for #theta#
#rsin(alpha-theta)=rsinalphacostheta-rsinthetacosalpha#
#{(rcosalpha=-30),(rsinalpha=49.56):}#
#<=>#, #r^2=sqrt(30^2+49.56^2)=57.93#
#{(cosalpha=-30/57.93=-0.558),(sinalpha=49.56/57.93=0.83):}#
#alpha=58.8^@#
Therefore,
#57.93sin(58.8-theta)=1.23#
#sin(58.8-theta)=1.23/57.93=0.021#
#58.8-theta=1.22#
#theta=58.8-1.22=57.58^@#
And
#t=cos(57.6)/(2cos(57.6)-1)=7.42s#
#x=60cos(57.58)(7.42-0.5)=222.6m#
#y=52*7.42-4.9*7.42^2=116.1m#