How to solve #sin3x<sinx#?

2 Answers
Jun 13, 2018

The solution is #x in (pi/4, 3/4pi)uu(pi,5/4pi)uu(7/4pi, 2pi)#, #[2pi]#

Explanation:

To solve this trigonometric inequality, we need

#sin3x=3sinx-4sin^3x#

The inequality is

#sin3x<sinx#

#=>#, #sin3x-sinx<0#

Let #f(x)=sin3x-sinx#

The period of #f(x)# is #T=2pi#

Study the functio on the interval #I= [0, 2pi]#

Therefore,

#f(x)=3sinx-4sin^3x-sinx#

#=2sinx-4sin^3x#

#=2sinx(1-sin^2x)#

Let #2sinx(1-sin^2x)=0#

The solutions to this equation are

#{(sinx=0),(1-2sin^2x=0):}#

#<=>#, #{(x=0+kpi),(x=pi/4+kpi), (x=5/4pi+kpi):}#

Build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##0##color(white)(aaaa)##pi/4##color(white)(aaaa)##3/4pi##color(white)(aaaa)##pi##color(white)(aaaa)##5/4pi##color(white)(aaaa)##7/4pi##color(white)(aaaa)##2pi#

#color(white)(aaaa)##sinx##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-#

#color(white)(a)##1-2sin^2x##color(white)(aa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-#

Therefore,

#f(x)<0# when #x in (pi/4, 3/4pi)uu(pi,5/4pi)uu(7/4pi, 2pi)#, #[2pi]#

graph{sin(3x)-sinx [-8.54, 37.08, -9.16, 13.64]}

Jun 13, 2018

sin 3x - sin x < 0
f(x) = 2cos (2x). sin x < 0
First solve the 2 basic trig equations to find the end-points (critical points)
1. g(x) = cos 2x = 0 --> #2x = pi/2#, and #2x = (3pi)/2# -->
#x = pi/4; x = (3pi)/4; x = (5pi)/4, and x = (7pi)/4#
2. h(x) = sin x = 0 --> #x = 0; x = pi; and x = 2pi#
Next, to algebraically solve the trig inequality, create a sign chart that shows the variation of the 2 functions g(x) and h(x) when x varies from 0 to #2pi# through the critical points.
#(0, pi/4, (3pi)/4, pi, (5pi)/4, (7pi)/4, 2pi)#
The sign (+ or -) of the function f(x) is the resulting sign of the 2 function g(x) and h(x)
The solutions are the intervals
#(pi/4, (3pi)/4)# where g(x) < 0, and h(x) > 0 and --> f(x) < 0
#(pi, (5pi)/4)# where g(x) > 0, and h(x) < 0, and --> f(x) < 0
#((7pi)/4, 2pi)# where g(x) > 0, and h(x) < 0 , and --> f(x) < 0
You also can solve the trig inequality by using graphing calculator.
The parts of the graph that lie below the x-axis represent the answers inside the interval #(0, 2pi)#
Note. The graph shows x in radians. Exp. x = pi = 3.14;
x = pi/2 = 1.57