How to differentiate tany = ((3x-x^3)/(1-3x^2)) ?

#tany = ((3x-x^3)/(1-3x^2)) #

2 Answers
Jun 13, 2018

#dy/dx=3/(x^2+1)#

Explanation:

I assume we're differentiating with respect to #x#.

#d/dxtany=d/dx((3x-x^3)/(1-3x^2))#

On the left, we need to use the chain rule. On the right, we'll use the quotient rule.

#sec^2y(dy/dx)=((d/dx(3x-x^3))(1-3x^2)-(3x-x^3)(d/dx(1-3x^2)))/(1-3x^2)^2#

Finding these derivatives and simplifying:

#sec^2ydy/dx=((3-3x^2)(1-3x^2)-(3x-x^3)(-6x))/(1-3x^2)^2#

#sec^2ydy/dx=(3x^4+6x^2+3)/(1-3x^2)^2#

You may notice the simplification:

#sec^2ydy/dx=(3(x^2+1)^2)/(1-3x^2)^2#

Now, we solve for the derivative:

#dy/dx=1/sec^2y(3(x^2+1)^2)/(1-3x^2)^2#

It's weird to leave the answer in this form, but we have a way around it! Recall that #tan^2y+1=sec^2y#.

#dy/dx=1/(tan^2y+1)(3(x^2+1)^2)/(1-3x^2)^2#

And we know that #tany=(3x-x^3)/(1-3x^2)#:

#dy/dx=1/((3x-x^3)^2/(1-3x^2)^2+1)(3(x^2+1)^2)/(1-3x^2)^2#

Let's simplify that:

#dy/dx=(1-3x^2)^2/((3x-x^3)^2+(1-3x^2)^2)(3(x^2+1)^2)/(1-3x^2)^2#

Cancel the #(1-3x^2)^2# terms and proceed by expanding #(3x-x^3)^2+(1-3x^2)^2#:

#dy/dx=(3(x^2+1)^2)/(x^6+3x^4+3x^2+1)#

Which can be simplified:

#dy/dx=(3(x^2+1)^2)/(x^2+1)^3#

#dy/dx=3/(x^2+1)#

Jun 13, 2018

# 3/(1+x^2)#.

Explanation:

Recall that, #tan3theta=(3tantheta-tan^3theta)/(1-3tan^2theta)#.

So, if we subst. #x=tantheta# [this we can do, because the range of

#tan# function is #RR#], then,

#tany=tan((3x-x^3)/(1-3x^2))#,

# rArr y=tan^-1((3x-x^3)/(1-3x^2))#,

#=tan^-1{tan((3tantheta-tan^3theta)/(1-3tan^2theta))}#,

#=tan^-1(tan3theta)#.

# rArr y=3theta=3tan^-1x#.

# :. dy/dx=3*1/(1+x^2)=3/(1+x^2)#, as Respected mason m. has

readily derived!