Suppose that, #I=intsec^3x/tanxdx#.
#:. I=int1/cos^3x*cosx/sinxdx=int1/(cos^2xsinx)dx#.
#=intsinx/(cos^2x*sin^2x)dx#,
#=intsinx/{cos^2x(1-cos^2x)}dx#,
Letting #cosx=t," so that, "-sinxdx=dt#, we have,
#I=int(-1)/(t^2(1-t^2))dt=int1/{t^2(t^2-1)}dt#,
#=int{(t^2-(t^2-1)}/{t^2(t^2-1)}dt#,
#=int{t^2/{t^2(t^2-1)}-(t^2-1)/{t^2(t^2-1)}}dt#,
#=int{1/(t^2-1)-1/t^2}dt#,
#={1/2ln|(t-1)/(t+1)|-(t^(-2+1)/(-2+1)}#,
#=1/2ln|(t-1)/(t+1)|+1/t#.
Since, #t=cosx#, we have,
# I=1/2ln|(cosx-1)/(cosx+1)|+1/cosx#,
#=lnsqrt|((cosx-1)/(cosx+1))|+secx#,
# rArr I=ln|tan(x/2)|+secx+C#.