What is the integral of #int secx/tan^2x dx#?
1 Answer
Jun 14, 2018
Explanation:
Let's rewrite the integrand:
#intsecx/tan^2xdx=int(1/cosx)/(sin^2x/cos^2x)dx=intcosx/sin^2x#
Here, recognize that
Another way we can solve
#intcosx/sin^2xdx=intu^-2du=-u^-1+C=-1/sinx+C=-cscx+C# .