Derivative of x^(lnx)^ln(lnx)?

2 Answers
Jun 14, 2018

#x^((lnx)^(ln(lnx))-1)(lnx)^ln(lnx)(2ln(lnx)+1)#

Explanation:

#y=x^((lnx)^(ln(lnx)))#

Take the natural log of both sides:

#lny=ln(x^((lnx)^(ln(lnx))))=(lnx)^ln(lnx)(lnx)=(lnx)^(ln(lnx)+1)#

Take the natural log once more:

#ln(lny)=ln((lnx)^(ln(lnx)+1))=(ln(lnx)+1)(ln(lnx))#

Now take the derivative of both sides. Use the chain rule on the left and product and chain rules on the right.

#1/lny(d/dxlny)=(d/dx(ln(lnx)+1))ln(lnx)+(ln(lnx)+1)(d/dxln(lnx))#

#1/lny(1/y)dy/dx=(1/lnxd/dxlnx)ln(lnx)+(ln(lnx)+1)(1/lnxd/dxlnx)#

#1/(ylny)dy/dx=ln(lnx)/(xlnx)+(ln(lnx)+1)/(xlnx)#

Solving for the derivative:

#dy/dx=(ylny(2ln(lnx)+1))/(xlnx)#

Substituting in #y# and #lny# as defined and previously derived:

#dy/dx=(x^((lnx)^(ln(lnx)))(lnx)^(ln(lnx)+1)(2ln(lnx)+1))/(xlnx)#

#dy/dx=x^((lnx)^(ln(lnx))-1)(lnx)^ln(lnx)(2ln(lnx)+1)#

Jun 14, 2018

#(dy)/(dx)=(y)/(x)xx(lnx)^(ln(lnx)){2ln(lnx)+1}#

Explanation:

Let,

#y=x^((lnx)^(ln(lnx))#

For simplicity we take,

#N=(lnx)^(ln(lnx))#

So, #y=x^N#

Taking log ,we get

#lny=lnx^N=N*lnx# , where , # N=(lnx)^(ln(lnx))#

#=>lny=(lnx)^(ln(lnx))*lnx...to(A)#

Again taking log,we get

#ln(lny)=ln((lnx)^(ln(lnx))*lnx)#

#=>ln(lny)=ln((lnx)^(ln(lnx)))+ln(lnx)#

#=>ln(lny)=ln(lnx)(ln(lnx)+ln(lnx)#

#=>ln(lny)=ln(lnx)[ln(lnx)+1]#

Diff. w. r. t. #x# ,#"using "color(blue)"product and Chain Rule :"#

#1/(lny)*1/y(dy)/(dx)#=#ln(lnx)[1/lnx*1/x]+[ln(lnx)+1]xx1/lnx1/x#

#=>1/(lny)*1/y(dy)/(dx)#=#[1/lnx*1/x]{ln(lnx)+ln(lnx)+1}#

#=>1/(ylny)(dy)/(dx)#=#[1/(xlnx)]{2ln(lnx)+1}#

#=>(dy)/(dx)=(ylny)/(xlnx){2ln(lnx)+1}#

OR. from #(A)# , we can put ,

#color(blue)(lny=(lnx)^(ln(lnx))*lnx)#

So,

#(dy)/(dx)=(y)/(xlnx)xxcolor(blue)((lnx)^(ln(lnx)) *lnx) {2ln(lnx)+1}#

#=>(dy)/(dx)=(y)/(x)xx(lnx)^(ln(lnx)){2ln(lnx)+1}#