How do you find the product of #(12c^3)/(21b)*(14b^2)/(6c)#?

1 Answer
Jun 15, 2018

See a solution process below:

Explanation:

First, factor the expression as:

#(6 * 2 * c * c^2)/(3 * 7 * b) * (2 * 7 * b * b)/(6 * c)#

Next, cancel common terms in the numerator and denominator:

#(color(red)(cancel(color(black)(6))) * 2 * color(blue)(cancel(color(black)(c))) * c^2)/(3 * color(green)(cancel(color(black)(7))) * color(purple)(cancel(color(black)(b)))) * (2 * color(green)(cancel(color(black)(7))) * color(purple)(cancel(color(black)(b))) * b)/(color(red)(cancel(color(black)(6))) * color(blue)(cancel(color(black)(c)))) =>#

#(2 * c^2)/3 * (2 * b)/1 =>#

#(2 * c^2 * 2 * b)/(3 * 1) =>#

#(4bc^2)/3#