How do you show #log_(ab)p=(mn)/(m+n)# ?

Given that #log_ap=m# and #log_bp=n#.

2 Answers
Jun 16, 2018

Please see below.

Explanation:

Given #log_ap=m# and #log_bp=n#, we have #a^m=p# and #b^n=p#. Hence

#(ab)^(mn)=a^(mn)b^(mn)#

= #p^n*p^m#

= #p^(m+n)#

or #(ab)^((mn)/(m+n))=p#

Hence #log_(ab)p=(mn)/(m+n)#

Jun 16, 2018

Please see below.
Using Law of logarithms

The shortest method , using Exponent Rules is given by respected @Shwetank Mauria for this answer.

Explanation:

We know that

#color(red)((1)log_xy=log_ky/log_kx,where, k# .is new base#to["Change of Base"]#

#color(blue)((2)log_z(x*y)=log_zx+log_zy..to["Product/sum rule]"#

Given that,

#color(red)(log_ap)=m and color(red)(log_bp)=n#

Using #(1)# we get

#color(red)(log_kp/log_ka)=m and color(red)(log_kp/log_kb)=n#

#=>1/m=log_ka/log_kp and 1/n=log_kb/log_kp#

So,

#1/m+1/n=log_ka/log_kp+log_kb/log_kp#

Simplifying we get,

#(n+m)/(mn)=(log_ka+log_kb)/log_kp#

#=>(m+n)/(mn)=log_k(ab)/log_kp...tocolor(blue)(Apply(2)#

#=>(mn)/(m+n)=log_kp/log_k(ab)#

Again using #(1)# to RHS ,we get

#(mn)/(m+n)=log_(ab)p#

#i.e. log_(ab)p=(mn)/(m+n)#

Note:

Change of Base formula:

#color(red)(log_(ab)p=log_kp/log_k(ab)#