#ptan(a)+qtan(b)=(p+q)tan{(a+b)/2}#
#=>ptan(a)+qtan(b)=(p+q)(2sin((a+b)/2)cos((a-b)/2))/(2cos((a+b)/2)cos((a-b)/2))#
#=>ptan(a)+qtan(b)=(p+q)(sin(a)+sin(b))/(cos(a)+cos(b))#
#=>(ptan(a)+qtan(b))(cos(a)+cos(b)) =(p+q)(sin(a)+sin(b))#
#=>ptan(a)cos(a)+qtan(b)cos(b)+qtan(b)cos(a)+ptan(a)cos(b) =p sin(a)+qsin(b)+qsin(a)+psin(b)#
#=>p sin(a)+q sin(b)+qtan(b)cos(a)+ptan(a)cos(b) =p sin(a)+qsin(b)+qsin(a)+p sin(b)#
#=>qtan(b)cos(a)+ptan(a)cos(b) =qsin(a)+p sin(b)#
#=>qtan(b)cos(a)-q sin (a)=p sin(b) -ptan(a)cos(b)#
#=>(q(sin(b)cos(a)-sin (a)cos(b)))/cos(b)=(p (sin(b)cos(a) -sin(a)cos(b)))/cos(a)#
#=>(q(sin(b-a)))/cos(b)=(p (sin(b-a)))/cos(a)#
#=>cos(a)/cos(b)=p/q#
Proved