Solve using double angles?. Sin2x-sinx=0

2 Answers
Jun 18, 2018

#x = pm 2 pi n, frac(pi)(3) pm 2 pi n#; where #n in ZZ#.

Explanation:

We have: #sin(2 x) - sin(x) = 0#

Using the double-angle identity for #sin(x)#, we get:

#Rightarrow 2 sin(x) cos(x) - sin(x) = 0#

#Rightarrow sin(x) (2 cos(x) - 1) = 0#

#Rightarrow sin(x) = 0#

#Rightarrow x = 0 pm 2 pi n#; #n in ZZ#

#Rightarrow x = pm 2 pi n#; #n in ZZ#

or

#Rightarrow cos(x) = frac(1)(2)#

#Rightarrow x = frac(pi)(3) pm 2 pi n#; #n in ZZ#

Therefore, the general solutions to the equation are #x = pm 2 pi n# or #x = frac(pi)(3) pm 2 pi n#, where #n in ZZ#.

Jun 18, 2018

#x=kpi" or "x=pi/3+2kpi#

Explanation:

#"using the "color(blue)"trigonometric identity"#

#•color(white)(x)sin2x=2sinxcosx#

#2sinxcosx-sinx=0#

#sinx(2cosx-1)=0#

#"equate each factor to zero and solve for "x#

#sinx=0rArrx=kpito(k in ZZ)#

#cosx=1/2rArrx=pi/3+2kpito(k inZZ)#