What is #int_(0)^(6) (1+x)^3(12-2x)^(3/2)dx #?

1 Answer
Jun 19, 2018

#int_0^6(1+x)^3(12-2x)^(3/2)dx=(110304sqrt3)/55#

Explanation:

Let

#I=int_0^6(1+x)^3(12-2x)^(3/2)dx#

Apply the substitution #12-2x=u^2#:

#I=1/8int_0^sqrt12(14-u^2)^3u^4du#

Expand the cube:

#I=1/8int_0^sqrt12(2744u^4-588u^6+42u^8-u^10)du#

Integrate term by term:

#I=1/8[2744/5u^5-84u^7+14/3u^9-1/11u^11]_0^sqrt12#

Insert the limits of integration:

#I=(sqrt12)^5/1320(90552-13860(sqrt12)^2+770(sqrt12)^4-15(sqrt12)^6)#

Simplify:

#I=(12sqrt3)/55(90552-13860(12)+770(12)^2-15(12)^3)#

Hence

#I=(110304sqrt3)/55#