How do you find two unit vectors parallel to vector a= [-4, -1, -6]?

1 Answer
Jun 19, 2018

#(4/sqrt53,1/sqrt53,6/sqrt53)# and #(-4/sqrt53,-1/sqrt53,-6/sqrt53)#

Explanation:

Consider the vector defined by #+-veca/||veca||#, where, #||veca||# is the

magnitude of #veca!=vec0#.

Here, #||veca||=sqrt{(-4)^2+(-1)^2+(-6)^2}=sqrt53#.

So, #(4/sqrt53,1/sqrt53,6/sqrt53)# and #(-4/sqrt53,-1/sqrt53,-6/sqrt53)#

are the desired vectors.