How do you solve (2sqrt3)/sqrt6236?

4 Answers
Jun 19, 2018

(2sqrt(3))/(sqrt(6))=color(blue)(sqrt(2))236=2

Explanation:

(color(lime)2sqrt(3))/(color(magenta)sqrt(6)236

color(white)("XXX")=(color(lime)(sqrt(2) * sqrt(2)) * sqrt(3))/(color(magenta)(sqrt(2) * sqrt(3)))XXX=22323

color(white)("XXX")=sqrt(2)XXX=2

Jun 19, 2018

(2sqrt(3))/(sqrt(6))=(2sqrt(3))/(sqrt(3)sqrt(2))=(2)/(sqrt(2))=sqrt2236=2332=22=2

Jun 19, 2018

sqrt(2)2

Explanation:

(2sqrt3)/sqrt6236

rArr (2sqrt3)/sqrt6 xxsqrt6/sqrt6236×66

rArr =(2sqrt(18))/sqrt36=21836

rArr (2*sqrt(9)*sqrt(2) )/(6) 2926

=> ( 6sqrt(2)) / 6 626

rArr sqrt(2) 2.

Jun 24, 2018

=>sqrt22

Explanation:

Because of the radical law

sqrtab=sqrta*sqrtbab=ab, we can rewrite this expression as

(2sqrt3)/(sqrt2*sqrt3)2323

Cancelling out common terms

(2cancel(sqrt3))/(sqrt2*cancel(sqrt3)

=>2/sqrt2

The convention is to not have an irrational number in the denominator, so let's multiply the top and bottom by sqrt2.

(2*sqrt2)/(sqrt2)^2

(2sqrt2)/2

(cancel2sqrt2)/cancel2

=>sqrt2

Hope this helps!