How do you take the derivative of #tan(4x)^tan(5x)#?

1 Answer
Jun 19, 2018

#(dy)/(dx)=y{(4tan(5x))/(sin(4x)cos(4x))+5sec^2(5x)lntan(4x)}#

Explanation:

Let,

#y=tan(4x)^tan(5x)#

Taking natural log. ,both sides

#lny=lntan(4x)^tan(5x)#

#lny=tan(5x)*lntan(4x)#

Diff.w.r.t #x# ,Using Product Rule:

#1/y(dy)/(dx)=tan(5x)d/(dx)(lntan(4x))+lntan(4x)d/(dx)(tan(5x))#

#1/y(dy)/(dx)=tan(5x)*4/tan(4x)sec^2(4x)+lntan(4x)5sec^2(5x)#

#1/y(dy)/(dx)=4tan(5x)cos(4x)/sin(4x)xx1/cos^2(4x)+5sec^2(5x)lnt an(4x)#

#1/y(dy)/(dx)=(4tan(5x))/(sin(4x)cos(4x))+5sec^2(5x)lntan(4x)#

#(dy)/(dx)=y{(4tan(5x))/(sin(4x)cos(4x))+5sec^2(5x)lntan(4x)}#