Ethanoic acid is a weak acid:
#sf(CH_3COOHrightleftharpoonsCH_3COO^(-)+H^+)#
#sf(K_a=([CH_3COO^-][H^+])/([CH_3COOH]))#
The % ionised enables us to calculate #sf(K_a)#
The degree of dissociation #sf(alpha)# is therefore 0.013.
We construct an ICE table based on mol/l. Let C be the initial concentration of the acid:
#sf(color(white)(xxx)CH_3COOHrightleftharpoonsCH_3COO^(-)+H^+)#
#sf(Icolor(white)(xxxx)Ccolor(white)(xxxxxxxxxxxx)0color(white)(xxxxx)0)#
#sf(Ccolor(white)(xx)-Calphacolor(white)(xxxxxxxxx)+Calphacolor(white)(xxx)+Calpha)#
#sf(Ecolor(white)(xx)C-Calphacolor(white)(xxxxxxxxxx)Calphacolor(white)(xxxx)Calpha)#
#:.##sf(K_a=(C^2alpha^2)/(C(1-alpha)))#
#sf(K_a=(Calpha^2)/((1-alpha))#
#sf(K_a=(0.5xx0.013^2)/((1-0.013))=8.56xx10^(-5))#
Rearranging the mass action expression for #sf([H^+])#:
#sf([H^+]=K_axx([CH_3COOH])/([CH_3COO^-]))#
Theses are equilibrium concentrations. For #sf(K_a)# values between #sf(10^-4)# to #sf(10^(-9)#we can assume that they approximate to initial concentrations.
Since the total volume is common I will just use moles:
#sf(n_(CH_3COOH)=cxxv=0.5xx400/1000=0.2)#
#sf(n_(CH_3COO^-)=cxxv=0.1xx800/1000=0.08)#
#:.##sf([H^+]=8.56xx10^(-5)xx0.2/0.08=2.14xx10^(-4)color(white)(x)"mol/l")#
#sf(pH=-log[H^+]=-log[2.14xx10^(-4)]=3.7)#