How much work does it take to push an object with a mass of #1 kg # up a #6 m # ramp, if the ramp has an incline of #(5pi)/12# and a kinetic friction coefficient of # 8 #?

1 Answer

Work done to displace the object of #1 kg# mass upward on a plane of length #l=6 m# inclined at an angle of #\theta={5\pi}/12#
#=\text{opposing force }\times \text{displacement against the direction of force}#
#=(mg\sin\theta+\mu mg\cos\theta)\times l #
#=(1\cdot 9.81\sin \frac{5\pi}{12}+0.8\cdot 1\cdot 9.81 \cos\frac{5\pi}{12})\times 6 #
#=58.86(\frac{\sqrt3+1}{2\sqrt2}+0.8\cdot \frac{\sqrt3-1}{2\sqrt2})#
#=58.86(\frac{1.8\sqrt3+0.2}{2\sqrt2})#
#=69.04166533116205\ J#