Apply partial fraction decomposition:
#x^2/((x-3)^2(x+4)) = A/(x-3)+B/(x-3)^2 +C/(x+4)#
#x^2/((x-3)^2(x+4)) = (A(x-3)(x+4)+B(x+4)+C(x-3)^2)/((x-3)^2(x+4))#
#x^2 = A(x^2+x-12)+Bx+4B+C(x^2-6x+9))#
#x^2 = Ax^2+ Ax-12A +Bx+4B +Cx^2 -6Cx+9C#
#x^2 = (A+C)x^2 + (A+B-6C)x - (12A-4B-9C)#
#{(A+C=1),(A+B-6C=0),(12A-4B-9C=0):}#
#{(A=1-C),(B-7C=-1),(4B+21C=12):}#
#{(A=1-C),(-4B+28C=4),(4B+21C=12):}#
#{(A=33/49),(B=9/7),(C=16/49):}#
Then:
#int (x^2dx)/((x-3)^2(x+4)) =33/49int dx /(x-3)+9/7int dx/(x-3)^2 +16/49int dx/(x+4)#
#int (x^2dx)/((x-3)^2(x+4)) =33/49ln abs(x-3)-9/(7(x-3)) +16/49ln abs(x+4)+C#