How do I integrate?
#int_0^1arctan(x/(x+1))/arctan((1+2x-2x^2)/2)dx#
1 Answer
Shift the interval to be symmetric around
Explanation:
Let
#I=int_0^1tan^(-1)(x/(x+1))/tan^(-1)((1+2x-2x^2)/2)dx#
Complete the square in the denominator:
#I=int_0^1tan^(-1)(x/(x+1))/tan^(-1)((3-(2x-1)^2)/4)dx#
Apply the substitution
#I=1/2int_-1^1tan^(-1)((1+u)/(3+u))/tan^(-1)((3-u^2)/4)du#
Apply the substitution
#I=1/2int_-1^1tan^(-1)((1-v)/(3-v))/tan^(-1)((3-v^2)/4)dv#
Add these two together:
#2I=1/2int_-1^1tan^(-1)((1+u)/(3+u))/tan^(-1)((3-u^2)/4)du+1/2int_-1^1tan^(-1)((1-v)/(3-v))/tan^(-1)((3-v^2)/4)dv#
Since the
#4I=int_-1^1tan^(-1)((1+t)/(3+t))/tan^(-1)((3-t^2)/4)dt+int_-1^1tan^(-1)((1-t)/(3-t))/tan^(-1)((3-t^2)/4)dt#
The distributive property of integration allows:
#4I=int_-1^1(tan^(-1)((1+t)/(3+t))/tan^(-1)((3-t^2)/4)+tan^(-1)((1-t)/(3-t))/tan^(-1)((3-t^2)/4))dt#
The denominators are identical:
#4I=int_-1^1(tan^(-1)((1+t)/(3+t))+tan^(-1)((1-t)/(3-t)))/tan^(-1)((3-t^2)/4)dt#
Apply the inverse trigonometric identity
#4I=int_-1^1tan^(-1)((3-t^2)/4)/tan^(-1)((3-t^2)/4)dt#
Hence:
#4I=int_-1^1dt#
The remaining integral is trivial:
#I=1/2#