#int cos^3 (ax+b)sin(ax+b) dx# ? Please integrate this using substitution

1 Answer
Jun 22, 2018

#I=-1/(4a)cos^4(ax+b)+c#

Explanation:

Here,

#I=intcos^3(ax+b)*sin(ax+b)dx#

Subst. #cos(ax+b)=u=>-sin(ax+b)*adx=du#

#=>sin(ax+b)dx=-1/adu#

So,

#I=intu^3(-1/a)du#

#:.I=-1/aintu^3du#

#=-1/a*u^4/4+c#

#=-1/(4a)*u^4+c#

Subst. back ,#u=cos(ax+b)# , we get

#I=-1/(4a)cos^4(ax+b)+c#
Note:

Please write only "int" for "integration"-symbol.