Given that #sin theta cos theta =7/50# and #0^0 < theta < 90^0#. Find the value of #cos theta#.?

Help pls...

2 Answers
Jun 22, 2018

#7/(5*sqrt(2)),1/(5*sqrt(2))#

Explanation:

Solving the equation
#sin(theta)*cos(theta)=7/50#
in the given interval we get

#x_1=-2arctan(7-5sqrt(2))#

#x_2=2arctan(1/7(5sqrt(2)-1))#
so we gat

#cos(x_1)=7/(5sqrt(2))#

#cos(x_2)=1/(5sqrt(2))#

Jun 22, 2018

#8^@13, 81^@87#

Explanation:

#sin t.cos t = 7/50#
Use trig identity: sin 2t = 2sin t.cos t
In this case:
#sin t.cos t = (sin 2t)/2 = 7/50#
#sin 2t = 15/50 = 7/25 #
Calculator and unit circle give 2 solutions for 2t:
#2t = 16^@26#, and #2t = 180 - 16.26 = 163^@74#
a. 2t = 16.26 + k360
#t = 8^@13 + k180^@#
b. 2t = 163.74 + k360
#t = 81^@87 + k180^@#
Answers for (0, 90)
#8^@13, 81^@87#
cos (8.13) = 0.99
cos (81.87) = 0.14