#int_0^oo arctanx/(x(x^2+a^2))dx# ?
1 Answer
Explanation:
We want to evaluate
#I=int_0^ooarctan(x)/(x(x^2+a^2))dx#
This can be solved by differentiation under the integral sign
Consider
#I(b)=int_0^ooarctan(bx)/(x(x^2+a^2))dx#
Notice
Differentiate both sides w.r.t. b
#I'(b)=int_0^oo1/((x^2+a^2)(x^2b^2+1))dx#
By partial fractions
#I'(b)=1/(1-a^2b^2)int_0^oo1/(x^2+a^2)-b^2/(x^2b^2+1)dx#
We recognize these integrals as
#I'(b)=1/(1-a^2b^2)[arctan(x/a)/a-b arctan(bx)]_0^oo#
Assuming
(We could just as well assumed
#I'(b)=1/(1-a^2b^2)((pi/2)/a-bpi/2)#
By some algebraic manipulation
#I'(b)=pi/2*1/(1-a^2b^2)((1-ab)/a)#
#color(white)(I'(b))=pi/(2a)(1-ab)/(1-a^2b^2)#
#color(white)(I'(b))=pi/(2a)1/(1+ab)#
Integrate both sides w.r.t b
#I(b)=pi/(2a)int1/(1+ab)db#
#color(white)(I(b))=pi/(2a^2)ln(1+ab)+C#
Evaluate the constant of integration (Remember
#0=pi/(2a^2)ln(1+a*0)+C=>C=0#
Thus
#I(b)=pi/(2a^2)ln(1+ab)#
Respecting negative values of
#I(b)=pi/(2a^2)ln(1+abs(a)b)#
In your case
#I(1)=I=pi/(2a^2)ln(1+abs(a))#