How do you simplify #-5sqrt18#?

2 Answers
Jun 23, 2018

#-15sqrt(2)#

Explanation:

#-5sqrt(18)#

(Then, since #sqrt(ab)=sqrt(a)*sqrt(b)#)

#=-5sqrt(9)sqrt(2)#
#=-5*3*sqrt(2)#
#=-15sqrt(2)#

Jun 23, 2018

See a solution process below:

Explanation:

Use this rule for radicals to simplify the expression:

#sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))#

#-5sqrt(18) => -5sqrt(color(red)(9) * color(blue)(2)) => -5sqrt(color(red)(9)) * sqrt(color(blue)(2)) => -5 * 3sqrt(2) => -15sqrt(2)#