#f'(x)=x*1/(2sqrt(x-1))+sqrt(x-1)#
simplify
#f'(x)=x/(2sqrt(x-1))+sqrt(x-1)#
#f'(x)=x/(2sqrt(x-1))+sqrt(x-1)*(2sqrt(x-1))/(2sqrt(x-1))#
#f'(x)=x/(2sqrt(x-1))+(2(x-1))/(2sqrt(x-1))#
#f'(x)=(x+2(x-1))/(2sqrt(x-1))#
expand the brackets
#f'(x)=(x+2x-2)/(2sqrt(x-1))#
#f'(x)=(3x-2)/(2sqrt(x-1))#
plug into point-slope formula
#y-y_1=f'(x_1)(x-x_1)#
remembering that the derivative finds the slope of a function so #m=f'(x_1)#
to find #y_1#
#f(4)=(4)sqrt((4)-1)#
#y_1=4sqrt(3)#
to find #f'(x_1)#
#f'(4)=(3(4)-2)/(2sqrt((4)-1)#
#f'(4)=(12-2)/(2sqrt(3))#
#f'(4)=10/(2sqrt(3))#
#f'(4)=5/sqrt(3)#
plug in
#y-4sqrt(3)=5/sqrt(3)(x-4)#
add #4sqrt(3)# to each side
#ycancel(-4sqrt(3)+4sqrt(3))=5/sqrt(3)(x-4)+4sqrt3#
expand brackets
#y=5/sqrt(3)x-5/sqrt3(4)#
#y=5/sqrt3x-20/sqrt3#