#2arctan(1/2)+arctan(1/7)=#?

2 Answers
Jun 24, 2018

#2arc tan(1/2)+arc tan (1/7)=arc tan(31/17)#

Explanation:

We know that ,

#color(red)((1)arc tanx+arc tany=arc tan((x+y)/(1-x*y))# , #color(red)(x*y < 1#

Let , #A=2arc tan(1/2)+arc tan (1/7)#

Using #(1)# we get ,

#color(blue)(2arc tan(1/2))=arc tan(1/2)+arc tan(1/2)#

#color(white)(2arc tan(1/2))=arc tan((1/2+1/2)/(1-1/2*1/2)),## x*y=1/2*1/2#=#1/4<1#

#color(white)(2arc tan(1/2))=arc tan(1/(1-1/4))#

#color(white)(2arc tan(1/2))=arc tan(1/(3/4))#

#color(blue)(2arc tan(1/2)=arc tan(4/3)#

So,

#A=color(blue)(arc tan (4/3))+arc tan(1/7)tocolor(red)( Apply(1)#

#A=arc tan((4/3+1/7)/(1-4/3*1/7)) , x*y=4/3*1/7=4/21<1#

#A=arc tan((28+3)/(21-4))#

#A=arc tan(31/17)#

Jun 24, 2018

#61^@26#

Explanation:

Use calculator:
#tan x = 1/2# --> arc #x = 26^@57#
#2arc x = 2(26.57) = 53^@13#
#tan y = 1/7# --> arc #y = 8^@13#
#2arctan (1/2) + arctan (1/7) = 53^@13 + 8^@13 = 61^@26#