How do I find missing values in binomial expansions?

I have the equation #(1+2x)^a=b+6x+12x^c+dx^3#, an I am asked to find the values of #a#, #b#, #c#, and #d#. How do I find these values?

1 Answer
Jun 25, 2018

See a solution process below:

Explanation:

#(1 + 2x)^color(red)(a) = color(blue)(b) + 6x +12x^color(green)(c) + color(purple)(d)x^3#

Because the large exponent on the right side of the equation is #3# then #color(red)(a)# will equal #color(red)(3)#:

#(1 + 2x)^color(red)(3) = color(blue)(b) + 6x +12x^color(green)(c) + color(purple)(d)x^3#

The constant will be #1^3 = 1# therefore: #color(blue)(b)# will be #color(blue)(1)#

#(1 + 2x)^color(red)(3) = color(blue)(1) + 6x +12x^color(green)(c) + color(purple)(d)x^3#

Because this is a binomial the exponent #color(green)(c)# will be #color(green)(2)#

#(1 + 2x)^color(red)(3) = color(blue)(1) + 6x +12x^color(green)(2) + color(purple)(d)x^3#

The coefficient of the #x# term on the left side of the equation will be cube: #2^3 = 8# therefore #color(purple)(d)# will be #color(purple)(8)#

#(1 + 2x)^color(red)(3) = color(blue)(1) + 6x +12x^color(green)(2) + color(purple)(8)x^3#