How I integrate this?

#int_0^(1/2)dx/(4-5sqrt(1-x^2)#

2 Answers
Jun 26, 2018

Rationalize the denominator then use lots of partial fraction decompositions.

Explanation:

Let

#I=int_0^(1/2)dx/(4-5sqrt(1-x^2))#

Rationalize:

#I=int_0^(1/2)dx/(4-5sqrt(1-x^2))*((4+5sqrt(1-x^2))/(4+5sqrt(1-x^2)))#

Simplify:

#I=int_0^(1/2)(4+5sqrt(1-x^2))/(25x^2-9)dx#

Integration is distributive:

#I=4int_0^(1/2)1/(25x^2-9)dx+5int_0^(1/2)sqrt(1-x^2)/(25x^2-9)dx#

Rearrange:

#I=-4int_0^(1/2)1/((3+5x)(3-5x))dx+5int_0^(1/2)(1-x^2)/(25x^2-9)dx/sqrt(1-x^2)#

Apply partial fraction decomposition:

#I=-2/3int_0^(1/2)(1/(3+5x)+1/(3-5x))dx-1/5int_0^(1/2)(1-16/(25x^2-9))dx/sqrt(1-x^2)#

Apply the substitution #x=sintheta#:

#I=-2/15[ln|3+5x|-ln|3-5x|]_ 0^(1/2)-1/5int_0^(pi/6)(1-16/(25sin^2theta-9))d theta#

Integration is distributive:

#I=-2/15ln(11)-1/5int_0^(pi/6)d theta+16/5int_0^(pi/6)1/(25sin^2theta-9)d theta#

Rearrange:

#I=-2/15ln(11)-pi/30+16/5int_0^(pi/6)sec^2theta/(25tan^2theta-9sec^2theta)d theta#

Since #sec^2theta=tan^2theta+1#:

#I=-2/15ln(11)-pi/30+16/5int_0^(pi/6)sec^2theta/(16tan^2theta-9)d theta#

Apply the difference of squares:

#I=-2/15ln(11)-pi/30-16/5int_0^(pi/6)sec^2theta/((3+4tantheta)(3-4tantheta))d theta#

Apply partial fraction decomposition:

#I=-2/15ln(11)-pi/30-8/15int_0^(pi/6)(1/(3+4tantheta)+1/(3-4tantheta))sec^2thetad theta#

Integrate term by term:

#I=-2/15ln(11)-pi/30-2/15[ln|3+4tantheta|-ln|3-4tantheta|]_0^(pi/6)#

Insert the limits of integration:

#I=-2/15ln(11)-pi/30-2/15ln((3sqrt3+4)/(3sqrt3-4))#

Rationalize:

#I=-2/15ln(11)-pi/30-2/15ln((3sqrt3+4)^2/11)#

Simplify:

#I=-pi/30-4/15ln(3sqrt3+4)#

Jun 28, 2018

# -pi/30+4/15ln|(5-3sqrt3)/(7-3sqrt3)|#.

Explanation:

Let, #I=int_0^(1/2)dx/(4-5sqrt(1-x^2)#.

Subst.ing #x=sinu, dx=cosudu." Also, "sqrt(1-x^2)=cosu#.

When #x=0 rArr sinu=0 rArr u=0#.

When #x=1/2 rArr u=pi/6#.

#:. I=int_0^(pi/6)(cosudu)/(4-5cosu)=-1/5int_0^(pi/6)(-5cosu)/(4-5cosu)du#,

#=-1/5int_0^(pi/6){(4-5cosu)-4}/(4-5cosu)du#,

#=-1/5int_0^(pi/6)(4-5cosu)/(4-5cosu)du+4/5int_0^(pi/6)1/(4-5cosu)du#,

#=-1/5[u]_0^(pi/6)+4/5J," where, "J=int_0^(pi/6)1/(4-5cosu)du#,

#=-1/5[pi/6-0]+4/5J=-pi/30+4/5J#,

For #J," we subst. "tan(u/2)=v. :. sec^2(u/2)*1/2*du=dv#.

#:. du=2*(dv)/sec^2(u/2)=(2dv)/(1+tan^2(u/2))=(2dv)/(1+v^2)...(1)#.

Further, #4-5cosu=4-5{(1-tan^2(u/2))/(1+tan^2(u/2))}#,

#=4-5{(1-v^2)/(1+v^2)}={4(1+v^2)-5(1-v^2)}/(1+v^2)#,

#:. 4-5cosu=(9v^2-1)/(1+v^2).......(2)#.

#"Also, "u=0 rArr v=0, &, u=pi/6, v=tan(pi/12)#.

Utilising #(1) and (2)#, we get,

#J=2int_0^(tan(pi/12))1/{(3v)^2-(1)^2}dv#,

#=2*1/2*1/3[ln|(3v-1)/(3v+1)|]_0^(tan(pi/12))#,

#=1/3ln|(3tan(pi/12)-1)/(3tan(pi/12)+1)|#.

#"Now, "tan(pi/12)=(sqrt3-1)/(sqrt3+1)=(sqrt3-1)^2/(3-1)=2-sqrt3#.

#:. J=1/3ln|{3(2-sqrt3)-1}/{3(2-sqrt3)+1}|=1/3ln|(5-3sqrt3)/(7-3sqrt3)|#.

#:. I=-pi/30+4/15ln|(5-3sqrt3)/(7-3sqrt3)|#.