How do you find #int(e^-x)/(1+e^-x)dx#?

4 Answers
Jun 28, 2018

#inte^(-x)/(e^(-x)+1)dx=x-ln(e^x+1)+c#

Explanation:

#inte^(-x)/(e^(-x)+1)dx=int(-(e^(-x)+1)')/(e^(-x)+1)dx=-int((e^(-x)+1)')/(e^(-x)+1)dx=-ln(e^(-x)+1)+c#

  • #ln(e^(-x)+1)=ln(1/e^x+1)=ln((e^x+1)/e^x)=ln(e^x+1)-lne^x=ln(e^x+1)-x#

Therefore, #inte^(-x)/(e^(-x)+1)dx=-(ln(e^x+1)-x)+c=x-ln(e^x+1)+c#

, #c##in##RR#

Jun 28, 2018

The answer is #=-ln(1+e^-x)+C#

Explanation:

Perform this integral by substitution

Let #u=1+e^-x#

#=>#, #du=-e^-xdx#

Therefore, the integral is

#I=int(e^-xdx)/(1+e^-x)#

#=-int(du)/u#

#=-ln(u)#

#=-ln(1+e^-x)+C#

Jun 28, 2018

#-ln(1+e^{-x})+C#

Explanation:

Let #u=e^{-x}#. This yields #du = -e^{-x}dx#

Rewrite

#\int \frac{e^{-x}}{1+e^{-x}}dx = - \int \frac{-e^{-x}}{1+e^{-x}}dx#

Substitute #-e^{-x}dx=du# and #e^{-x}=u#:

#- \int \frac{1}{1+u}du#

This integral is #-ln(1+u)+C#.

Substitute back #u=e^{-x}# to get

#\int \frac{e^{-x}}{1+e^{-x}}dx = -ln(1+e^{-x})+C#

Jun 28, 2018

I tried this:

Explanation:

Have a look:
enter image source here